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1 Approximation and Eigenvalues of Compact Operators

1.1 Approximation of compact operators by finite rank operators

Last time, we were talking about invariant and reducing subspaces of a Hilbert space M .
Here, we have H = M ⊕M⊥ and A ∈ B(H) is

A =

[
X Y
W Z

]
.

We saw that M is reducing ⇐⇒ PMA = APM ⇐⇒ Y = 0,W = 0.

Proposition 1.1. M is reducing if and only if M is invariant under both A and A∗.

Proof. This is because

A∗ =

[
X∗ W ∗

Y ∗ Z∗

]
.

Then M is invariant for A∗ iff Y = 0 iff M⊥ is invariant for A.

Recall that B0(H) is the space of compact operators, and B00 is the space of finite rank
operators.

Theorem 1.1. B00(H) is dense in B0(H).

Proof. If T ∈ B0(H), then T (BH) is a compact metric space. So it is countable. Then
ranT ⊆ spanT (BH) ⊆ spanD, where D is any countable dense set in T (BH). So there
is an orthonormal 〈en〉n such that ranT ⊆ span{en}. Let Pm be the projection onto
span{e1, . . . , em}. We will show that ‖PmT − T‖op → 0.

Observe that for any h ∈ BH , we have Th =
∑

n 〈Th, ej〉 eh. Then PnTh → Th in the
norm of H. Let ε > 0. We can choose h1, . . . , jk ∈ BH such that for all h ∈ BH , there
is some i such that ‖Th − Thi‖ < ε. Choose m such that ‖PmThi − Thi‖ < ε for all
i = 1, . . . , k. Then

‖PmTh− Th‖ < ‖Pm(Th− Thi)‖+ ‖PmThi − Thi‖+ ‖Th− i− Th‖ < 3ε.

So ‖PmT − T‖op < 3ε.
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Remark 1.1. If you try to do this with general Banach spaces, it fails. The issue is that
you cannot guarantee that ‖Pm‖ = 1 for all m. So you lose control of the bound at the
end.

Suppose 〈en〉n is an orthonormal basis for H. Define an operator by Ten = αnen for
αn ∈ F.

Lemma 1.1. T ∈ B0(H) if and only if |αn| → 0.

Proof. ( =⇒ ): Assume there exist some ε > 0 and n1 < n2 < · · · such that|αni > ε. Then
{Ten1 , T en2 , · · · = {αn1en, αn2en2 , . . . } ⊆ T (BH). These all are distance ≥ ε to each other
and are orthonormal to each other.

(⇐= ): Let

Tme− n =

{
αnen n ≤ m
0 n > m

= PmT.

Then we have the diagonal matrix:

T − PmT =



0
. . .

0
αm+1

αm+2

. . .


.

So we can see that ‖T − PmT‖op ≤ maxn>m |αn|.

Example 1.1. Let k ∈ L2(µ× µ) and let

Kf(x) =

∫
k(x, y)f(y) dµ(y).

For example, if h ∈ L2(−π, π), we have

Kf(x) =
1√
2π

∫ π

−π
h(x− y)f(y) dy.

Let the Fourier basis be en(x) = 1√
2π
e−inx for all n ∈ Z. Then we can check

Ken(x) = ĥ(x) · en(x).
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1.2 Eigenvalues of compact operators

Definition 1.1. If A ∈ B(H), an eigenvalue of A is a λ ∈ F such that ker(A− λ) 6= {0}.
The λ-eigenspace is the set of eigenvectors corresponding to the eigenvalue λ. We
denote the point spectrum σp(A) to be the set of eigenvalues of A.

Remark 1.2. This is a special subset of the spectrum, which is the set of λ ∈ F such
that A− λ1 is not invertible.

Example 1.2. In C4, the matrix 
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


has no nonzero eigenvalues but is nonzero. This kind of phenomenon becomes much richer
in infinite dimensions, and we can have compact operators with no nonzero eigenvalues but
with interesting properties.

Example 1.3. On L2([0, 1]), the Volterra operator is

V f(x) =

∫ x

0
f(y) dy =

∫ 1

0
1{y≤x}f(y) dy.

Proposition 1.2. The Volterra operator is compact but has no eigenvalues.

Proof. Suppose V f = λf with f 6= 0. If λ = 0, then the integral of f only any interval is
0, so f = 0. Suppose λ 6= 0. Then we get f(x) = λ−1

∫ x
0 f , so f is absolutely continuous,

f ′ exists, and f ′(x) = λ−1f(x) a.e. Since we must have f is continuous, this gives f ′(x) =
λ−1f(x) everywhere. The solution to this differential equation is f(x) = Cecx. But we
must have C = 0 because the original equation implies f(0) = 0. So f = 0.

Proposition 1.3. Let T ∈ B0(H) and λ ∈ σp(T ) \ {0}. Then dim ker(T − λ1) <∞.

Proof. Call M = ker(T − λ1). Then Tx = λx for all x ∈ M . We have T (BH) ⊇ T (BH ∩
M) = λBM , which is not totally bounded unless dimM <∞.

Proposition 1.4. Let T ∈ B0(H), and let λ 6= 0. Assume that

inf{‖(T − λ)h‖ : ‖h‖ = 1} = 0.

Then λ ∈ σp(T ).

Remark 1.3. This says that “approximate eigenvalues” are actually eigenvalues for com-
pact operators.

3



Proof. Choose h1, h2, . . . with ‖hn‖ = 1 such that Thn − λhh = (T − λ)hn → 0 in ‖ · ‖.
Choose n1 < n2 < · · · susch that Thn → g. Then λhn = Thn − (Thn − λhn) → g, so
hn → λ−1g. So Thn → λ−1Tg = g.

Corollary 1.1. Let T ∈ B0(H), and suppose that λ /∈ σp(T ) ∩ {0} and λ /∈ σp(T ∗). Then
T − λ is invertible.

Remark 1.4. In fact, we will see that λ /∈ σp(T ∗) is implied by λ /∈ σp(T ) ∩ {0}.

Proof. We know that ker(T − λ) = {0}. On the other hand,

(ran(T − λ))⊥ = ker(T ∗ − λ) = {0}.

To finish, we will show that ran(T − λ) is closed. (T − λ)h = 0 has no nonzero solutions,
so there is a c > 0 such that ‖(T − λ)h‖ ≥ c‖h‖ for all h. So (T − λ) is an open mapping,
which forces ran(T − λ) to be closed.

1.3 The spectral theorem for self-adjoint operators

We will prove the following theorem.

Theorem 1.2 (Spectral theorem for self-adjoint operators). Suppose T is comapct and
self adjoint. Then

1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(T − λn) ⊥ ker(T − λm)).

• λn ∈ R for all n.

• T =
∑∞

n=1 λnPn in ‖ · ‖op.

This is an infinite-dimensional diagonalization of T .
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